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Dynamics of learning in coupled oscillators tutored with delayed reinforcements
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In this work we analyze the solutions of a simple system of coupled phase oscillators in which the connec-
tivity is learned dynamically. The model is inspired by the process of learning of birdsongs by oscine birds. An
oscillator acts as the generator of a basic rhythm and drives slave oscillators which are responsible for different
motor actions. The driving signal arrives at each driven oscillator through two different pathways. One of them
is a direct pathway. The other one is a reinforcement pathway, through which the signal arrives delayed. The
coupling coefficients between the driving oscillator and the slave ones evolve in time following a Hebbian-like
rule. We discuss the conditions under which a driven oscillator is capable of learning to lock to the driver. The
resulting phase difference and connectivity are a function of the delay of the reinforcement. Around some
specific delays, the system is capable of generating dramatic changes in the phase difference between the driver
and the driven systems. We discuss the dynamical mechanism responsible for this effect and possible applica-

tions of this learning scheme.
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I. INTRODUCTION

Biological systems are capable of generating an extremely
rich variety of motor commands. Most impressively, in many
cases, these articulated commands are learned through expe-
rience. The dynamical processes involved in learning are the
focus of extensive research, both in order to gain knowledge
on how living systems operate and as an inspiration for the
design of artificial systems capable of adaptation and learn-
ing.

In this framework, the acquisition of song by oscine birds
is a wonderful animal model for the study of how nontrivial
behavior can be learned [1,2]. First, it has tight parallels with
speech acquisition, since birds must hear a tutor during a
sensitive period and practice while hearing themselves in or-
der to learn to vocalize [1,2]. Second, the discovery of dis-
crete nuclei (large sets of neurons) involved in the process of
producing and learning song has provided a neural substrate
for behavior, turning this animal model in a rich test bench to
study the neural mechanisms of learning. Finally, recent
physical models of birdsong production have provided in-
sight into how the activity of different neural populations can
be associated with the acoustic features of song [3,4].

In the last years, much has been learned about the neural
processes involved in the generation of song by oscine birds.
As in many other biological systems, song production is
based on a rhythmic activity. Namely, a syllable is repeated
when a motor gesture is performed periodically. This gesture
involves the coordination of a respiratory pattern and the
rhythmic activation of the muscles controlling the syrinx
(i.e., the avian vocal organ). Recent work has unveiled that
many important acoustic features of birdsong are in fact de-
termined by the phase difference between two basic gestures:
the pressure at the air sacs and the tension of the ventral
muscles controlling the syrinx [4]. As the result of an exten-
sive research program, the specific roles of different neural
nuclei in this process are being understood.

It was through lesions and the observation of behavior
that the nuclei involved in the generation of motor activities
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responsible for the production of song were identified [5].
The so called “motor pathway” is constituted by two nuclei
called HVC (high vocal center) and RA (robustus nucleus of
the archistriatum). During the production of song, the HVC
sends instructions to the RA, which, in turn, sends instruc-
tions to two different nuclei: the nXIIts, which enervates the
syringeal muscles, and the RAm, in control of respiration.

Work on Zebra finches (taeniopygia guttata) has analyzed
in detail the exact time relation between the firing of neurons
in HVC and RA during song [6]. The picture emerging from
these experiments is that during each time window in the RA
sequence, RA neurons are driven by a subpopulation of RA-
projecting HVC neurons which are active only during that
window of time [6]. These experiments suggest that the pre-
motor burst patterns in RA are basically driven by the activi-
ties of HVC neurons [7]. If this is the case, the architecture
of the connectivity between the HVC nucleus and the RA
nucleus determines the complex patterns of activity in RA
neurons.

A second pathway thoroughly studied is the anterior fore-
brain pathway (AFP). This pathway connects indirectly the
nuclei HVC and RA, as shown in Fig. 1. In contrast with the
motor pathway, this pathway contributes only minimally to
the production of song in adults [8]. However, it has been
shown that the lesions to the nuclei in this pathway during
learning profoundly alter the bird’s capability of developing
normal song [9,10]. The output of this pathway is the lateral
magnocellular nucleis of the anterior neostriatum (LMAN).
Individual RA neurons receive inputs from both LMAN and
HVC nuclei, which is consistent with the picture that expe-
rience related LMAN activity facilitates certain HVC-RA
synapses, helping to build the neural architecture necessary
to produce the adult song. According to this picture, a se-
quence of bursts generated at a RA-projecting HVC will in-
duce some activity in RA and also eventually induce the
activity of LMAN that will lead to either the potentiation or
depression of the connection. This signal, however, requires
a processing time through the AFP, which has been estimated
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FIG. 1. The activity of the nucleus HVC is represented by the
phase variable ¢; and drives the neurons in nucleus RA through
two different pathways: a direct way synapses onto the cells de-
scribed by the phase variable ¢, and an indirect projection, control-
ling the activity of ¢; of another set of cells. The phase ¢; is
delayed with respect to ¢, in a. The strength k of the connection
between ¢, and ¢; depends on the phase difference ¢,—¢;.

in approximately 40 ms in Zebra finches [11].

If we are interested in the generation of the instructions
controlling a motor output, it is sensible to model the process
in terms of global oscillators. In this way, the periodic activ-
ity of the HVC nucleus when a syllable is being repeated is
represented in terms of the oscillation of a simple oscillator.
The nucleus RA, being driven by HVC, is represented by a
second oscillator driven by the first one. In this framework,
the dynamics of learning is the dynamics of the coupling
coefficients between the oscillators.

With this biological inspiration, we make a computational
study of the dynamical mechanisms by which a driven neural
oscillator (representing the activity of a subpopulation of RA
neurons) can learn to lock to its driver (representing the neu-
rons in the nucleus HVC). The forcing that HVC performs
upon RA through the indirect pathway AFP has been repre-
sented by a delayed reinforcement. The learned phase differ-
ence between driver and driven oscillators has been studied
as a function of the reinforcement delay. In certain parameter
regimes, small changes in the delay have been found to lead
to important changes in the learned phase difference, and we
explain this effect in terms of the dynamics of the system.

The work is organized as follows. In Sec. II we discuss
the mathematical model used to emulate the activities in our
neural circuits. The solutions of this model are discussed in
Sec. III. The consequences of the dynamical skeleton in
terms of learning dynamics are discussed in Sec. I'V. Section
V contains applications of these mechanisms to rate models
of neural populations. Section VI presents our conclusions.

II. MODEL

Rhythmic activity plays an important role in many neural
systems [12]. Cyclic neuronal activity is typically modeled in
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terms of periodic oscillators. Moreover, for those cases
where the amplitude of the oscillations does not vary, it is
possible to further reduce the dynamics of the oscillator to a
phase variable. Winfree, Kuramoto, and others have shown
important features of coupled systems following this ap-
proach [13].

In a recent work, a generalized Kuramoto model of
coupled oscillators with a slow coupling dynamics was in-
vestigated [12]. Inspired by a Hebbian-like learning para-
digm, the authors wrote a dynamical system for the evolution
of the coupling which would strengthen synchronized states.
The system of oscillators presented an interesting dynamics:
the original difference between the natural frequencies of the
oscillators served as a driving force in the dynamics of the
phase differences between the oscillators. When the coupling
parameters fell within a given range, the oscillators were
eventually able to lock. In addition, a plasticity ingredient
was incorporated, acting at a slower time scale. Namely, the
dynamics of the coupling strength between the oscillators
was driven by the phase difference between them. Once
again, for some parameter values, the oscillators would end
up locked.

In this work we are interested in the process of locking an
oscillator to its driver, exploring the dynamical consequences
of reinforcing the driving through a second pathway. In order
to model this effect, three phase variables ¢, ¢,, and ¢; are
introduced. In terms of the inspiring problem, ¢, represents
the oscillation of a first nucleus generating a periodic instruc-
tion (as HVC, with its periodic dynamics). The phase ¢,
stands for the activity of some region of the nucleus RA,
which contains premotor neurons controlling some aspect of
the song production. This phase is driven by ¢,. Finally, ¢;
parametrizes the activity of the indirect pathway, and its dy-
namics is assumed to be the same as that of ¢;, delayed
some time 7. Modeling the activity of HVC as a simple a
harmonic function of frequency w,, this delay translates into
a phase a=wT.

According to these hypotheses, the model describing the
dynamics of these variables reads

e (1)
d
% = w, — k sin(¢, — ) — ki3 sin(h, — ¢3), (2)
dk
E= ycos(¢, - ¢y) —k, (3)
with ¢hy= by - av.

In Fig. 1 we show a sketch of the three nuclei and their
connections indicating the associated dynamical variables.
Replacing ¢3=¢,—a in Eq. (2) and scaling the equations,
the following dynamical system for the phase difference ¢,
—¢=¢ and k is obtained:

%gzl—kﬁn¢—kmﬁm¢+aL 4)
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FIG. 2. Nullclines ¢=0 (solid line) and k=0 (dashed line), y
=2, a=37/4, and different values of k3: (a) k;3=1.5, (b) kj3=1,
and (c) k;3=10.

dk

0 e(ycos p—k). (5)
We are interested in understanding the dynamics of this set
of equations, with stress on the stationary solutions that the
system can “learn.” We are particularly interested in finding
out whether there are delays that can provide any special
advantage in the process of learning to control a periodic
motor pattern.

III. SOLUTIONS

For a qualitative understanding of the solutions presented
by this system of equations, we can compute the nullclines:
curves for which each variable is stationary. They are

PHYSICAL REVIEW E 72, 011907 (2005)
k=[1-k3sin(¢+ a)]/sin ¢, (6)

k=ycos(¢). (7)

In Fig. 2 we display the nullclines for different values of the
parameters. The intersections of the nullclines give the fixed
points of the system (kg, ).

In the parameter range k53 € [0, 1.42], the nullcline of Eq.
(6) presents two branches: the first one with a minimum, the
second one with a maximum. Depending on the parameter
values, one of the branches or both might intersect the
nullcline of Eq. (7). These intersections, when they occur,
lead to the appearance of a saddle and a node in a saddle-
node bifurcation. For vy sufficiently large, two attracting fixed
points (separated by two saddles) can coexist. On the other
hand, for y sufficiently small, there are no intersections be-
tween the nullclines and, therefore, no stationary phase dif-
ference between the driver and driven oscillator can be es-
tablished.

The topological organization of the nullclines present
qualitative changes as the system parameters are varied.
These changes leave their imprint on the dependence of the
stable fixed-point angular positions with the parameters. In
Fig. 3 we show the positions of the fixed points as a function
of the reinforcement delay «, varied between (0,27). The
different insets correspond to a different value of the rein-
forcement parameter k5. In the figure, the solid lines indicate
the linearly stable solutions and the lines with crosses the
unstable ones (which in all cases are saddle points). For
small values of the coupling, there are delays for which no
fixed points exist [Fig. 3(a)]. At specific delays, stable and
unstable fixed points are born in saddle-node bifurcations. In
terms of nullclines, this corresponds to situations in which
the second branch of the nullcline of Eq. (6) presents a mini-
mum which touches the nullcline of Eq. (7) [see Fig. 2(a)].
As the reinforcement strength is increased, the region of re-
inforcement delays for which no stationary solutions exist
decreases in size. As the reinforcement parameter k3 is fur-
ther increased, the regions with no solutions disappear and
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the bifurcation curves meet at a transcritic point [Fig. 3(b)]
around which a narrow zone of multistability appears. Fi-
nally, as the reinforcement strength is further increased, the
angular position of the fixed points varies monotonically
[Figs. 3(c) and 3(d)].

The existence of these bifurcation curves has profound
consequences in terms of learning. Notice that close to cer-
tain values of the delay «, a minimal change in a gives rise
to important differences in the equilibrium phases learned by
the system. In the following section, we will discuss poten-
tial consequences of this bifurcating structure in a learning
process.

IV. INTERPRETATION

The animal model inspiring our dynamical model is the
motor pathway in oscine birds. Part of this pathway is the
nucleus RA containing excitatory neurons, some of which
enervate respiratory nuclei and others enervate the nucleus
nXIIts, which projects to the muscles in the syrinx [14].
These two populations are segregated into different regions
of the RA structure.

Recently, the study of the avian vocal organ allowed us to
associate acoustical features of the song with properties of
the muscle instructions necessary to generate the song. The
production of repetitive syllables requires a cyclic expiratory
gesture and a cyclic gesture of the syringeal muscles [15].
Sound is produced by labia located at the junction between
bronchii and tract, obstructing periodically the airflow. The
model mentioned above describes the departure of the mid-
point of a labium from the prephonatory position x [4,16]:

dx
— =y, 8
At (8)
d
;f = e()x - Cy + B(0)y, 9)

where €(z) is a function of the activity of ventral muscles,
whereas B(¢) is a function of the bronchial pressure. This
model has been tested by using experimentally recorded &(z)
and B(r). The resulting x(z) was remarkably similar to the
one produced while the physiological data had been recorded
[16].

The phase difference between the €(z) and B(r), respon-
sible for important acoustic features of song (such as the
dynamics of the syllabic fundamental frequency), originates
in RA. Recent work has unveiled that direct connections be-
tween respiratory nuclei and nXIIts can affect the final value
of the phase difference. Yet it is at RA that the neurons
driven by HVC also receive input from the indirect pathway
AFP, and therefore it is at this level that the phase difference
between gestures can be altered.

In order to apply the results of the previous section to a
learning strategy for birdsong, let us assume that two oscil-
lators represent the cyclic activity of RA during the produc-
tion of song. One of the oscillators mimics the activity of the
neural population enervating the nXIIts nucleus, while the
other oscillator represents the population of neurons which
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FIG. 4. (a) Two oscillators representing neuron populations
(nX1Its and RAm) driven by a master oscillator (HVC) will learn to
follow the master at different delays. The two populations control
different aspects of the song production apparatus: the syringeal
nucleus and the respiratory muscles, respectively. (b) Phase differ-
ence A¢y as a function of a. The solid line corresponds to the
difference between the stationary solutions with kj3=15 and k3
=1.5, the dashed line to k;3=5 and k3=1.5, the dotted line to k3
=2.5 and k3=1.5, and the dash-dotted line to ki3=1.8 and k3
=1.5. All calculations are performed with y=1.

control the respiratory pattern. Both oscillators are assumed
to be driven by the nucleus HVC, presenting a global activity
with a syllabic rhythm. The reinforcement oscillator drives
both RA oscillators with a signal equal to that of HVC, but
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FIG. 5. The sonograms of two songs
which consist of a repetition of the same
syllable, for which the phase difference

5.0 learned is (a) A¢py=0 and (b) Agy=m/2.
The parameters of Egs. (8) and (9) are
€(t)=7x10"+6 X 107 cos(2t/44 100) a.u.,
B(1)=5 X 10?2+ 103 cos(2 7t/ 44&#2009;100
+Ady) au., and C=2X10° a.u.
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delayed in a phase a. Figure 4(a) illustrates the proposed
architecture.

According to Fig. 3, if the two oscillators representing RA
are strongly reinforced by the AFP circuit [i.e., if k5 is large
as in Fig. 3(d)], for every value of the forcing there will be a
locked state. The phase difference between their own oscil-
lation and the one of the driver will be the same for both
oscillators, whatever the value of the delay «. However, a
different situation is found if each one of the oscillators is
reinforced through a different coupling strength k5. Imagine
that for one of them, k5 is similar to the one used to generate
Fig. 3(b), while the other one is forced though a coupling
strength as the one used to generate Fig. 3(d). In this case,
depending on the value of the delay, qualitatively different
phase differences can be achieved between each RA oscilla-
tors and the driver (and, therefore, between the two RA os-
cillators themselves).

In Fig. 4(b), the value of the phase difference A, is
displayed as function of « for different pairs of oscillators.
We have fixed y=1. In all cases, one of the oscillators, which
is taken as a reference, is assumed to be coupled to the AFP
circuit through the parameter k3=1.5, corresponding to the
situation of Fig. 3(b). For the other oscillator, we consider
different values of k;3>1.5. All these couplings give rise to
stationary solutions ¢ that decrease monotonously as a func-
tion of « [see Figs. 3(c) and 3(d)]. The curves in Fig. 4(b) are
the difference between the stationary solution of both oscil-
lators for several values of the second coupling constant. In
order to indicate in detail how this difference is computed we
take the example of the solid line in Fig. 4(b), for which the
second oscillator is coupled to the AFP circuit with a strength
ki3=15. This curve corresponds to the difference of the so-
lutions indicated with I and II in Fig. 3(b) (i.e., the stationary
solution for the reference oscillator) and curve IIT in Fig. 3(d)
(the stable solution for the second oscillator). We notice,
however, that there is a small range of a for which the
branches of solutions I and II coexist. For such values of «
we have taken branch II as the solution for the reference
oscillator. This choice leads to the lowest possible value of
phase difference between the two oscillators, since branch III
is closer to branch II than to branch I. [Hence, the phase
difference could be even higher than the one shown in Fig.
4(b).] It should be stressed that there are delays (close to the

value a=31/4 for the parameters used here) for which small
displacements can lead to a huge change in the stationary
phase difference between the oscillators. Notice that Fig.
4(b) is 7 periodic, so there is a similar effect around «
=T7m/4.

The results in Fig. 4(b) are robust with respect to changes
in the parameter y. We have checked that for all y
€ (0.5,10), the transcritical bifurcation occurs at a=3mw/4
and a=T7m/4. Moreover, whenever « is in the neighborhood
of any of these critical values, the phase difference between
oscillators with different k5 is highly sensitive to the value
of a. Yet the values of k5 relevant for observing the men-
tioned phenomena do depend on vy. For instance, the value of
k15 at which the transcritical bifurcation is observed increases
with y. It goes from kj3=1.2 for y=0.5 to k;3=6 for y
=10.

Figure 5 illustrates how different the learned syllables can
be for small changes in the reinforcement delay if they occur
around a=3m/4. The figure displays a sonogram showing
the time evolution of the fundamental frequency of the sound
produced by the model of the syrinx when driven by the
“learned” phase differences.

V. APPLICATION TO RATE MODELS

The Kuramoto model describing the time evolution of
phase differences between oscillators constitutes a popular
model, particularly suited for analytic work. Yet we explored
whether these effects are also present in other models. We
tested the basic findings of the previous sections in rate mod-
els for the activities of neural populations.

Rate models are introduced to account for the dynamics
of the average activity of neural nuclei. For a problem in-
volving a macroscopic motor control program it is a suitable
level of description. In particular, a widely used model for
the average activity of two subpopulations (exitatory and in-
hibitory) is the Wilson-Cowan system of equations [17].

We let x and y stand for the activities of the excitatory and
inhibitory subpopulations, respectively. In [14] it was shown
that in the portions of RA with neurons projecting to XIIts
and to respiratory nuclei, the (excitatory) projecting neurons
coexist with inhibitory neurons. We drove the equations rul-
ing their dynamics with two signals. One represents HVC
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FIG. 6. Bifurcation diagram for the Wilson-Cowan system [Eq.
(10)] forced with frequency w=0.3. The horizontal axis represents
the delay « and the vertical axis represents the maximum amplitude
A of the oscillations in phase space. A broad phase difference be-
tween two slave oscillators with weights k;3=2 and k;3=3 can be
achieved within a narrow range of delays 297/15<a<31#/16. In
the insets, solutions x(z) along with forcing function cos(wt) for the
three different regimes found. The equations were integrated with
the following parameters: p,=-5.75, p,=-1, a=10, b=-1.5, c=2,
d=2, and \=68. '

activity and the other one the activity in nucleus LMAN,
assumed to be a delayed copy of the first signal. A typical
Hebbian rule was used to describe the dynamics of the cou-
pling between HVC and RA. The system reads

dx
Pty + S[p, + ax + by + k cos(wt) + k5 cos(wt — @)],

d
d—f:—y+S(py+cx+dy), (10)

dk
— = \x cos(wt) — k,
dt
with a saturation function S(x)=1/(1+¢e™).

We integrated these equations for the whole range of de-
lays o €[0,27). In Fig. 6 we show a window representing a
bifurcation around a=297/15, where two qualitatively dif-
ferent period-1 solutions can be found. The transition occurs
through a bubble in parameter space where a period-2 exists.
It is interesting that the different period-1 solutions (illus-
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trated in the insets) are locked to the periodic forcing fre-
quency at different phases. As k3 is increased, only a single
period-1 solution is present. Therefore, two subpopulations
reinforced through a delay « around this bifurcating value
with these weights will lock at a phase difference within a
wide range of values as the delay is slightly increased.

VI. CONCLUSIONS

In a recent work [12], the process of learning a phase
difference between two phase oscillators coupled with a slow
varying coupling constant was described. Here, the impact of
subjecting the driven system to two delayed copies of a sig-
nal is studied. This design is inspired in an animal model,
oscine birds, which learn their song by modifying the archi-
tecture of connections within the motor pathway. Our model
is a caricature of the complex processes that have been de-
scribed for the animal model, which involved the conver-
gence to a motor nucleus of two signals, separated by a de-
lay. Our study indicates that for some values of the amplitude
of the reinforcement, the learned phase difference between
driver and slave depends strongly on the delay of the rein-
forcement. This allows one to conceive simple strategies of
learning motor gestures that require a tuning between differ-
ent neural populations. We precisely illustrate the power of
this strategy with an example of the inspiring biological
problem. We show that playing with small variations in the
delay of the reinforcement, completely different syllables in
a bird song can be generated.

In the problem of bird song learning, the timing of the
indirect pathway (the anterior forebrain pathway) can be
changed [18] by dopaminergic input. Not much is known
about the precise nature of the coding used by a bird to
translate an error into the indirect signal. Measures of activ-
ity in the nucleus LMAN (the last one of the AFP pathway,
which projects onto RA) in a juvenile bird learning his song
are still not possible. The simple model presented in this
work allows us to explore theoretically the dynamical
mechanisms that enter into a learning scheme compatible
with the basic ingredients present in the animal model.
Moreover, it provides a new control mechanism applicable to
artificially designed neural systems.
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